• Home
  • Simple deterministic models
    • SIR model
    • Python using SciPy
    • R using deSolve
    • R using odin
    • Julia
    • Octave
    • Scilab
    • C++
    • xppaut
    • VFGEN
    • Javascript
    • Javascript using Observable
    • SEIR model
    • Julia
    • R using deSolve
    • SIS model
    • Javascript using Observable
    • Scaling model
    • Julia
    • Python
    • R using deSolve
  • Simple stochastic models
    • Continuous time SIR
    • R
    • R using GillespieSSA
    • R using Rcpp
    • Julia
    • Discrete time SIR
    • R using odin
    • R using POMP
    • R using LibBi
    • Python
    • Julia
    • Discrete time SEIRD
    • R using odin
  • Final size of an epidemic
    • Exact recursive expressions
    • Original Matlab code
    • Julia
    • Octave
    • Scilab
    • R
  • Non-exponential passage times
    • Discrete Erlang SEIR model
    • Julia
    • R
  • Host-vector models
    • One host, one vector
    • Julia
    • N hosts, one vector
    • Julia
    • N hosts, M vectors
    • Julia
  • Macroparasite models
    • May and Anderson 1978 model
    • Julia
    • R using deSolve
  • Time-varying parameters
    • Seasonally forced deterministic model
    • R
    • Javascript using Observable
    • Semiparametric SIR model
    • Julia
    • R using pomp
  • Metapopulation models
    • Deterministic SEIR
    • R using odin
    • SIRS dynamics in a large population of households
    • Julia
  • Network models
    • An edge based SIR model on a configuration network
    • R
    • Javascript using Observable
    • An individual based model of pneumococcal transmission
    • R
    • An SIR model in London boroughs
    • R
  • Phylodynamic models
    • Simple coalescent model
    • R
  • Applications
    • Acute HIV infection
    • R
    • A model of HIV with two risk groups
    • R
    • A deterministic SEIR model of Ebola
    • Python using PyGOM
    • Python using SciPy
    • A stochastic, seasonal, discrete-time model of rotavirus
    • R using POMP
  • Keeling and Rohani 2008
    • Program 2.1
    • Original C
    • Original Fortran
    • Original Python
    • Original Matlab/Octave
    • Program 2.6: SEIR
    • R using deSolve
    • Julia
    • Program 3.1: SIS with risk groups
    • R using deSolve
    • Julia
    • Program 3.2: SIS with m risk groups
    • R using deSolve
    • Program 3.4: Age structured SEIR
    • R using deSolve
    • Program 4.4: Multi-host SEIR
    • R using deSolve
  • Bjornstad 2018
    • Chapter 1: Introduction
    • Original R code
    • Chapter 2: SIR
    • Original R code
    • Chapter 3: R0
    • Original R code
    • Chapter 4: FoI and age-dependent incidence
    • Original R code
    • Chapter 5: Seasonality
    • Original R code
  • Appendices
    • Style guide for notebooks

Models with time varying parameters

Previous Next